z-logo
Premium
A Stochastic Regression Model for General Trend Analysis of Longitudinal Continuous Data
Author(s) -
Chao WeiHsiung,
Chen SuHua
Publication year - 2009
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.200800254
Subject(s) - covariate , mathematics , estimator , statistics , autoregressive model , regression analysis , econometrics , linear regression
A predictive continuous time model is developed for continuous panel data to assess the effect of time‐varying covariates on the general direction of the movement of a continuous response that fluctuates over time. This is accomplished by reparameterizing the infinitesimal mean of an Ornstein–Uhlenbeck processes in terms of its equilibrium mean and a drift parameter, which assesses the rate that the process reverts to its equilibrium mean. The equilibrium mean is modeled as a linear predictor of covariates. This model can be viewed as a continuous time first‐order autoregressive regression model with time‐varying lag effects of covariates and the response, which is more appropriate for unequally spaced panel data than its discrete time analog. Both maximum likelihood and quasi‐likelihood approaches are considered for estimating the model parameters and their performances are compared through simulation studies. The simpler quasi‐likelihood approach is suggested because it yields an estimator that is of high efficiency relative to the maximum likelihood estimator and it yields a variance estimator that is robust to the diffusion assumption of the model. To illustrate the proposed model, an application to diastolic blood pressure data from a follow‐up study on cardiovascular diseases is presented. Missing observations are handled naturally with this model.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here