z-logo
Premium
Misclassification in Logistic Regression with Discrete Covariates
Author(s) -
Davidov Ori,
Faraggi David,
Reiser Benjamin
Publication year - 2003
Publication title -
biometrical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 63
eISSN - 1521-4036
pISSN - 0323-3847
DOI - 10.1002/bimj.200390031
Subject(s) - covariate , logistic regression , statistics , mathematics , outcome (game theory) , econometrics , mathematical economics
We study the effect of misclassification of a binary covariate on the parameters of a logistic regression model. In particular we consider 2 × 2 × 2 tables. We assume that a binary covariate is subject to misclassification that may depend on the observed outcome. This type of misclassification is known as (outcome dependent) differential misclassification. We examine the resulting asymptotic bias on the parameters of the model and derive formulas for the biases and their approximations as a function of the odds and misclassification probabilities. Conditions for unbiased estimation are also discussed. The implications are illustrated numerically using a case control study. For completeness we briefly examine the effect of covariate dependent misclassification of exposures and of outcomes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here