z-logo
Premium
Protein splicing: Excision of intervening sequences at the protein level
Author(s) -
Cooper Antony A.,
Stevens To M. H.
Publication year - 1993
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.950151006
Subject(s) - rna splicing , protein splicing , alternative splicing , computational biology , genetics , biology , gene , microbiology and biotechnology , exon , rna
Protein splicing is an extraordinary post‐translational reaction that removes an intact central “spacer” domain (Sp) from precursor proteins (N‐Sp‐C) while splicing together the N‐ and C‐domains of the precursor, via a peptide bond, to produce a new protein (N‐C). All of the available data on protein splicing fit a model in which these intervening sequences excise at the protein level via a self‐splicing mechanism. Several proteins have recently been discovered that undergo protein splicing, and in two such cases, the excised spacer protein is an endonuclease. Such endonucleases are capable of conferring genetic mobility upon the intervening sequences that encodes them. These intervening sequences define a new family of mobile genetic elements that are translated yet remain phenotypically silent by excising at the protein rather than the RNA level.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here