z-logo
Premium
The evolutionary history of the first three enzymes in pyrimidine biosynthesis
Author(s) -
Davidson Jeffrey N.,
Chen Kuey C.,
Jamison Robert S.,
Musmanno Lisa A.,
Kern Christine B.
Publication year - 1993
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.950150303
Subject(s) - carbamyl phosphate , aspartate carbamoyltransferase , pyrimidine metabolism , carbamoyl phosphate synthetase , biochemistry , biology , gene , operon , enzyme , glutaminase , protein subunit , biosynthesis , allosteric regulation , escherichia coli , amino acid , glutamine , purine
Some metabolic pathways are nearly ubiquitous among organisms: the genes encoding the enzymes for such pathways must therefore be ancient and essential. De novo pyrimidine biosynthesis is an example of one such metabolic pathway. In animals a single protein called CAD Abbreviations: CAD, trifunctional protein catalyzing the first three steps of de novo pyrimidine biosynthesis in higher eukaryotes; CPS, carbamyl phosphate synthetase domain; CPSase, carbamyl phosphate synthetase activity; ATC, aspartate transcarbamylase domain; ATCase, aspartate transcarbamylase activity; DHO, dihydroorotase domain; DHOase, dihydroorotase activity; GLN, glutaminase subdomain or subunit of carbamyl phosphate synthetase, GL Nase, glutaminase activity; SYN, synthetase subdomain or subunit of carbamyl phosphate synthetase; SYNase, synthetase activity. carries the first three steps of this pathway. The same three enzymes in prokaryotes are associated with separate proteins. The CAD gene appears to have evolved through a process of gene duplication and DNA rearrangement, leading to an in‐frame gene fusion encoding a chimeric protein. A driving force for the creation of eukaryotic genes encoding multienzymatic proteins such as CAD may be the advantage of coordinate expression of enzymes catalyzing steps in a biosynthetic pathway. The analogous structure in bacteria is the operon. Differences in the translational mechanisms of eukaryotes and prokaryotes may have dictated the different strategies used by organisms to evolve coordinately regulated genes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here