z-logo
Premium
Transcription factors regulate early T cell development via redeployment of other factors
Author(s) -
Hosokawa Hiroyuki,
Masuhara Kaori,
Koizumi Maria
Publication year - 2021
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.202000345
Subject(s) - biology , transcription factor , chromatin , transcription (linguistics) , cell fate determination , genetics , progenitor cell , lineage (genetic) , gene , tcf4 , microbiology and biotechnology , stem cell , enhancer , linguistics , philosophy
Establishment of cell lineage identity from multipotent progenitors is controlled by cooperative actions of lineage‐specific and stably expressed transcription factors, combined with input from environmental signals. Lineage‐specific master transcription factors activate and repress gene expression by recruiting consistently expressed transcription factors and chromatin modifiers to their target loci. Recent technical advances in genome‐wide and multi‐omics analysis have shed light on unexpected mechanisms that underlie more complicated actions of transcription factors in cell fate decisions. In this review, we discuss functional dynamics of stably expressed and continuously required factors, Notch and Runx family members, throughout developmental stages of early T cell development in the thymus. Pre‐ and post‐commitment stage‐specific transcription factors induce dynamic redeployment of Notch and Runx binding genomic regions. Thus, together with stage‐specific transcription factors, shared transcription factors across distinct developmental stages regulate acquisition of T lineage identity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here