Premium
Epigenetic regulation of replication origin assembly: A role for histone H1 and chromatin remodeling factors
Author(s) -
Falbo Lucia,
Costanzo Vincenzo
Publication year - 2021
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.202000181
Subject(s) - biology , epigenetics , origin recognition complex , replication timing , dna replication factor cdt1 , chromatin , pre replication complex , somatic cell , genetics , dna replication , control of chromosome duplication , histone , microbiology and biotechnology , chromatin remodeling , origin of replication , dna re replication , reprogramming , eukaryotic dna replication , gene
Abstract During early embryonic development in several metazoans, accurate DNA replication is ensured by high number of replication origins. This guarantees rapid genome duplication coordinated with fast cell divisions. In Xenopus laevis embryos this program switches to one with a lower number of origins at a developmental stage known as mid‐blastula transition (MBT) when cell cycle length increases and gene transcription starts. Consistent with this regulation, somatic nuclei replicate poorly when transferred to eggs, suggesting the existence of an epigenetic memory suppressing replication assembly origins at all available sites. Recently, it was shown that histone H1 imposes a non‐permissive chromatin configuration preventing replication origin assembly on somatic nuclei. This somatic state can be erased by SSRP1, a subunit of the FACT complex. Here, we further develop the hypothesis that this novel form of epigenetic memory might impact on different areas of vertebrate biology going from nuclear reprogramming to cancer development.