Premium
Genetic Causation in Complex Regulatory Systems: An Integrative Dynamic Perspective
Author(s) -
DiFrisco James,
Jaeger Johannes
Publication year - 2020
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.201900226
Subject(s) - reductionism , systems biology , causation , biology , phenotype , perspective (graphical) , gene regulatory network , scope (computer science) , computational biology , epistasis , pleiotropy , gene , genetics , epistemology , computer science , gene expression , artificial intelligence , programming language , philosophy
The logic of genetic discovery has changed little over time, but the focus of biology is shifting from simple genotype–phenotype relationships to complex metabolic, physiological, developmental, and behavioral traits. In light of this, the traditional reductionist view of individual genes as privileged difference‐making causes of phenotypes is re‐examined. The scope and nature of genetic effects in complex regulatory systems, in which dynamics are driven by regulatory feedback and hierarchical interactions across levels of organization are considered. This review argues that it is appropriate to treat genes as specific actual difference‐makers for the molecular regulation of gene expression. However, they are often neither stable, proportional, nor specific as causes of the overall dynamic behavior of regulatory networks. Dynamical models, properly formulated and validated, provide the tools to probe cause‐and‐effect relationships in complex biological systems, allowing to go beyond the limitations of genetic reductionism to gain an integrative understanding of the causal processes underlying complex phenotypes.