z-logo
Premium
TGF‐β Control of Adaptive Immune Tolerance: A Break From Treg Cells
Author(s) -
Liu Ming,
Li Shun,
Li Ming O.
Publication year - 2018
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.201800063
Subject(s) - foxp3 , biology , transforming growth factor , immune system , peripheral tolerance , immunology , microbiology and biotechnology , transforming growth factor beta , acquired immune system , transcription factor , immune tolerance , t cell , regulatory t cell , il 2 receptor , genetics , gene
The vertebrate adaptive immune system has well defined functions in maintaining tolerance to self‐tissues. Suppression of autoreactive T cells is dependent on the regulatory cytokine transforming growth factor‐β (TGF‐β) and regulatory T (Treg) cells, a distinct T cell lineage specified by the transcription factor Foxp3. Although TGF‐β promotes thymic Treg (tTreg) cell development by repressing T cell clonal deletion and peripheral Treg cell differentiation by inducing Foxp3 expression, a recent study shows that TGF‐β suppresses autoreactive T cells independent of Foxp3 + Treg cells. These findings imply that as an ancestral growth factor family member, TGF‐β may have been co‐opted as a T cell‐intrinsic mechanism of self‐tolerance control to assist the evolutionary transition of vertebrate adaptive immunity. Later, perhaps in placental mammals upon their acquisition of a TGF‐β regulatory element in the Foxp3 locus, the TGF‐β pathway is further engaged to induce peripheral Treg cell differentiation and expand the scope of T cell tolerance control to innocuous foreign antigens.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom