Premium
Mitochondria and the non‐genetic origins of cell‐to‐cell variability: More is different
Author(s) -
Guantes Raúl,
DíazColunga Juan,
Iborra Francisco J.
Publication year - 2016
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.201500082
Subject(s) - biology , mitochondrion , gene , cell , population , genetics , genome , microbiology and biotechnology , computational biology , gene expression , transcription (linguistics) , linguistics , philosophy , demography , sociology
Gene expression activity is heterogeneous in a population of isogenic cells. Identifying the molecular basis of this variability will improve our understanding of phenomena like tumor resistance to drugs, virus infection, or cell fate choice. The complexity of the molecular steps and machines involved in transcription and translation could introduce sources of randomness at many levels, but a common constraint to most of these processes is its energy dependence. In eukaryotic cells, most of this energy is provided by mitochondria. A clonal population of cells may show a large variability in the number and functionality of mitochondria. Here, we discuss how differences in the mitochondrial content of each cell contribute to heterogeneity in gene products. Changes in the amount of mitochondria can also entail drastic alterations of a cell's gene expression program, which ultimately leads to phenotypic diversity. Also watch the Video Abstract .