z-logo
Premium
Pausing for thought: Disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis
Author(s) -
Jennings Barbara H.
Publication year - 2013
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.201200179
Subject(s) - biology , multicellular organism , gene , genetics , zebrafish , phenotype , transcription factor , model organism , forward genetics , transcriptional regulation , microbiology and biotechnology , transcription (linguistics) , computational biology , linguistics , philosophy
Factors affecting transcriptional elongation have been characterized extensively in in vitro, single cell (yeast) and cell culture systems; however, data from the context of multicellular organisms has been relatively scarce. While studies in homogeneous cell populations have been highly informative about the underlying molecular mechanisms and prevalence of polymerase pausing, they do not reveal the biological impact of perturbing this regulation in an animal. The core components regulating pausing are expressed in all animal cells and are recruited to the majority of genes, however, disrupting their function often results in discrete phenotypic effects. Mutations in genes encoding key regulators of transcriptional pausing have been recovered from several genetic screens for specific phenotypes or interactions with specific factors in mice, zebrafish and flies. Analysis of these mutations has revealed that control of transcriptional pausing is critical for a diverse range of biological pathways essential for animal development and survival.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here