z-logo
Premium
Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells
Author(s) -
Day Richard N.,
Davidson Michael W.
Publication year - 2012
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.201100098
Subject(s) - förster resonance energy transfer , microscopy , fluorescence microscope , fluorescence , confocal microscopy , biophysics , nanotechnology , chemistry , biology , microbiology and biotechnology , materials science , physics , optics
Abstract The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live‐cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here