Premium
Visual threshold is set by linear and nonlinear mechanisms in the retina that mitigate noise
Author(s) -
Pahlberg Johan,
Sampath Alapakkam P.
Publication year - 2011
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.201100014
Subject(s) - stimulus (psychology) , sensory system , noise (video) , computer science , pooling , receptor potential , visual system , retina , neuroscience , artificial intelligence , biology , receptor , psychology , genetics , image (mathematics) , psychotherapist
In sensory biology, a major outstanding question is how sensory receptor cells minimize noise while maximizing signal to set the detection threshold. This optimization could be problematic because the origin of both the signals and the limiting noise in most sensory systems is believed to lie in stimulus transduction. Signal processing in receptor cells can improve the signal‐to‐noise ratio. However, neural circuits can further optimize the detection threshold by pooling signals from sensory receptor cells and processing them using a combination of linear and nonlinear filtering mechanisms. In the visual system, noise limiting light detection has been assumed to arise from stimulus transduction in rod photoreceptors. In this context, the evolutionary optimization of the signal‐to‐noise ratio in the retina has proven critical in allowing visual sensitivity to approach the limits set by the quantal nature of light. Here, we discuss how noise in the mammalian retina is mitigated to allow for highly sensitive night vision.