Premium
Energetic trade‐offs between brain size and offspring production: Marsupials confirm a general mammalian pattern
Author(s) -
Isler Karin
Publication year - 2011
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.201000123
Subject(s) - brain size , encephalization , biology , marsupial , offspring , zoology , ecology , evolutionary biology , pregnancy , medicine , genetics , magnetic resonance imaging , radiology
Recently, Weisbecker and Goswami presented the first comprehensive comparative analysis of brain size, metabolic rate, and development periods in marsupial mammals. In this paper, a strictly energetic perspective is applied to identify general mammalian correlates of brain size evolution. In both marsupials and placentals, the duration or intensity of maternal investment is a key correlate of relative brain size, but here I show that allomaternal energy subsidies may also play a role. In marsupials, an energetic constraint on brain size in adults is only revealed if we consider both metabolic and reproductive rates simultaneously, because a strong trade‐off between encephalization and offspring production masks the positive correlation between basal metabolic rate and brain size in a bivariate comparison. In conclusion, starting from an energetic perspective is warranted to elucidate relations between ecology, social systems, life history, and brain size in all mammals.