z-logo
Premium
Speciation through cytonuclear incompatibility: Insights from yeast and implications for higher eukaryotes
Author(s) -
Chou JuiYu,
Leu JunYi
Publication year - 2010
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.200900162
Subject(s) - biology , genetic algorithm , reproductive isolation , evolutionary biology , genome , mitochondrial dna , yeast , genetics , population , gene , demography , sociology
Several features of the yeast mitochondrial genome, including high mutation rate, dynamic genomic structure, small effective population size, and dispensability for cellular viability, make it a promising candidate for generating hybrid incompatibility and driving speciation. Cytonuclear incompatibility, a specific type of Dobzhansky‐Muller genetic incompatibility caused by improper interactions between mitochondrial and nuclear genomes, has previously been observed in a variety of organisms, yet its role in speciation remains obscure. Recent studies in Saccharomyces yeast species provide a new insight, with experimental evidence that cytonuclear incompatibility and DNA sequence divergence are both causes of the reproductive isolation of different yeast species. Interestingly, these two mechanisms seem to be perfectly complementary to each other in terms of their effects and evolutionary trajectories. Direct molecular analyses of the incompatible genes in yeasts have started to shed light on the evolutionary forces driving speciation.   Editor's suggested further reading in BioEssays The cytoplasmic structure hypothesis for ribosome assembly, vertical inheritance, and phylogeny Abstract Mitochondrial bioenergetics as a major motive force of speciation Abstract

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here