Premium
Evolutionary formation of new protein folds is linked to metallic cofactor recruitment
Author(s) -
Ji HongFang,
Chen Lei,
Jiang YingYing,
Zhang HongYu
Publication year - 2009
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.200800201
Subject(s) - cofactor , metalloprotein , manganese , zinc , copper , metal , anoxic waters , chemistry , fold (higher order function) , biology , crystallography , biochemistry , evolutionary biology , ecology , enzyme , organic chemistry , mechanical engineering , engineering
To explore whether the generation of new protein folds could be linked to metallic cofactor recruitment, we identified the oldest examples of folds for manganese, iron, zinc, and copper proteins by analyzing their fold‐domain mapping patterns. We discovered that the generation of these folds was tightly coupled to corresponding metals. We found that the emerging order for these folds, i.e ., manganese and iron protein folds appeared earlier than zinc and copper counterparts, coincides with the putative bioavailability of the corresponding metals in the ancient anoxic ocean. Therefore, we conclude that metallic cofactors, like organic cofactors, play an evolutionary role in the formation of new protein folds. This link could be explained by the emergence of protein structures with novel folds that could fulfill the new protein functions introduced by the metallic cofactors. These findings not only have important implications for understanding the evolutionary mechanisms of protein architectures, but also provide a further interpretation for the evolutionary story of superoxide dismutases.