Premium
Using embryonic stem cells to form a biological pacemaker via tissue engineering technology
Author(s) -
Ou DongBo,
Lang HongJuan,
Chen Rui,
Liu XiongTao,
Zheng QiangSun
Publication year - 2009
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.200800179
Subject(s) - embryonic stem cell , stem cell , tissue engineering , biology , microbiology and biotechnology , genetics , gene
Biological pacemakers can be achieved by various gene‐based and cell‐based approaches. Embryonic stem cells (ESCs)‐derived pacemaker cells might be the most promising way to form biological pacemakers, but there are challenges as to how to control the differentiation of ESCs and to overcome the neoplasia, proarrhythmia, or immunogenicity resulting from the use of ESCs. As a potential approach to solve these difficult problems, tissue‐engineering techniques may provide a precise control on the different cell components of multicellular aggregates and the forming of a construct with‐defined architectures and functional properties. The combined interactions between ESC‐derived pacemaker cells, supporting cells, and matrices may completely reproduce pacemaker properties and result in a steady functional unit to induce rhythmic electrical and contractile activities. As ESCs have a high capability for self‐renewal, proliferation, and potential differentiation, we hypothesize that ESCs can be used as a source of pacemaker cells for tissue‐engineering applications and the ambitious goal of biological cardiac pacemakers may ultimately be achieved with ESCs via tissue‐engineering technology.