Premium
Commitment to meiosis: what determines the mode of division in budding yeast?
Author(s) -
Simchen Giora
Publication year - 2009
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.200800124
Subject(s) - meiosis , biology , microbiology and biotechnology , prophase , mitosis , cell division , dna replication , genetics , genetic recombination , control of chromosome duplication , gene , cell , recombination
In budding yeast, commitment to meiosis is attained when meiotic cells cannot return to the mitotic cell cycle even if the triggering cue (nutrients deprivation) is withdrawn. Commitment is arrived at gradually, and different aspects of meiosis may be committed at different times. Cells become fully committed to meiosis at the end of Prophase I, long after DNA replication and just before the first meiotic division (M I ). Whole‐genome gene expression analysis has shown that committed cells have a distinct and rapid response to nutrients, and are not simply insulated from environmental signals. Thus becoming committed to meiosis is an active process. The cellular event most likely to be associated with commitment to meiosis is the separation of the duplicated spindle‐pole bodies (SPBs) and the formation of the spindle. Commitment to the mitotic cell cycle is also associated with the separation of SPBs, although it occurs in G1, before DNA replication.