Premium
Cell diversity in the retina: more than meets the eye
Author(s) -
Cook Tiffany
Publication year - 2003
Publication title -
bioessays
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.175
H-Index - 184
eISSN - 1521-1878
pISSN - 0265-9247
DOI - 10.1002/bies.10356
Subject(s) - biology , eye development , retina , transcription factor , evolutionary biology , drosophila (subgenus) , compound eye , vertebrate , neuroscience , retinal , gene , genetics , computational biology , biochemistry , physics , optics
Over 10 years ago, Pax‐6 was shown to play an evolutionarily conserved role in controlling eye formation from Drosophila to humans.1 Since then, the identification of an entire cascade of conserved eye determination genes has brought a new understanding to the developmental relationship between the insect compound eye and the vertebrate camera eye.2 Additional studies are now beginning to suggest that even late aspects of eye development, including cell type specification, also share common molecular machinery. In this commentary, I will discuss some of these findings, with a particular focus on the recent study by Dyer et al.3 describing a novel role for the Prox1 transcription factor in specifying horizontal cells in the mouse retina. As Prospero, the Drosophila homolog of Prox1, also participates in retinal cell specification, these data provide a forum for asking new questions concerning pathways that may regulate retinogenesis across evolution. BioEssays 25:921–925, 2003. © 2003 Wiley Periodicals, Inc.