Premium
Effect of static magnetic fields on osteoblasts and fibroblasts in vitro
Author(s) -
McDonald Fraser
Publication year - 1993
Publication title -
bioelectromagnetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 81
eISSN - 1521-186X
pISSN - 0197-8462
DOI - 10.1002/bem.2250140302
Subject(s) - in vitro , explant culture , fibroblast , thymidine , centrifugation , osteoblast , stimulation , differential centrifugation , chemistry , biophysics , biology , microbiology and biotechnology , biochemistry , endocrinology
In vitro assays were made of the effect of a static magnetic field of a neodymium magnet on cellular behavior. The cell turnover rate was examined by the incorporation of radioactive thymidine, and anabolic processes were measured by the incorporation of radioactive proline. Cell cultures of fibroblast‐ and osteoblast‐like cells of the neonatal rat calvarium were assayed to determine uptakes of radioactive thymidine and proline; these assays were performed in conjunction with examination of an explant of the rat calvarium. The cells were assayed after exposure to a field for 1‐, 3‐, 5‐, 7‐, and 10‐day periods. Cells were exposed to north and south poles with a pole‐face flux density of 0.61 T; control cultures were exposed to an unmagnetised piece of neodymium. After sham exposure or exposure to the magnetic field, 50 μCuries/ml of culture media of isotope were added to the culture medium. The cultures were returned to an incubator for 6 h. Then, following centrifugation, the supernatant was assayed for radioactivity in a scintillation counter after addition of 3 ml of scintillation fluid. A statistically significant magnetic stimulation of turnover rate and synthesis of fibroblasts was found, but stimulation of osteoblasts did not occur. Conversely, the explants, which represent the osteoblasts and fibroblasts in an organised system, showed a statistically significant inhibition in uptake of the radioactive label. The data indicate both variability and diversity of cellular behaviour, and they accentuate the need for caution in the interpretation of effects of static magnetic fields. © 1993 Wiley‐Liss, Inc.