Premium
Melatonin Levels and Low‐Frequency Magnetic Fields in Humans and Rats: New Insights From a Bayesian Logistic Regression
Author(s) -
Bouché Nicolas F.,
McConway Kevin
Publication year - 2019
Publication title -
bioelectromagnetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 81
eISSN - 1521-186X
pISSN - 0197-8462
DOI - 10.1002/bem.22218
Subject(s) - bioelectromagnetics , logistic regression , parametric statistics , extremely low frequency , bayesian probability , melatonin , statistics , spurious relationship , dynamo , physics , medicine , mathematics , magnetic field , quantum mechanics
The present analysis revisits the impact of extremely low‐frequency magnetic fields (ELF‐MF) on melatonin (MLT) levels in human and rat subjects using both a parametric and non‐parametric approach. In this analysis, we use 62 studies from review articles. The parametric approach consists of a Bayesian logistic regression (LR) analysis and the non‐parametric approach consists of a Support Vector analysis, both of which are robust against spurious/false results. Both approaches reveal a unique well‐ordered pattern, and show that human and rat studies are consistent with each other once the MF strength is restricted to cover the same range (with B ≲ 50 μT). In addition, the data reveal that chronic exposure (longer than ∼22 days) to ELF‐MF appears to decrease MLT levels only when the MF strength is below a threshold of ~30 μT ( log B thr [ μ T ] = 1 . 4 − 0 . 4 + 0 . 7), i.e., when the man‐made ELF‐MF intensity is below that of the static geomagnetic field. Studies reporting an association between ELF‐MF and changes to MLT levels and the opposite (no association with ELF‐MF) can be reconciled under a single framework. Bioelectromagnetics. 2019;40:539–552. © 2019 Bioelectromagnetics Society.