z-logo
Premium
Exposure assessment in front of a multi‐band base station antenna
Author(s) -
Kos Bor,
Valič Blaž,
Kotnik Tadej,
Gajšek Peter
Publication year - 2011
Publication title -
bioelectromagnetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 81
eISSN - 1521-186X
pISSN - 0197-8462
DOI - 10.1002/bem.20640
Subject(s) - specific absorption rate , bioelectromagnetics , antenna (radio) , frequency band , limiting , radiation pattern , effective radiated power , front (military) , acoustics , environmental science , remote sensing , physics , optics , computer science , telecommunications , electromagnetic field , geology , engineering , meteorology , mechanical engineering , quantum mechanics
This study investigates occupational exposure to electromagnetic fields in front of a multi‐band base station antenna for mobile communications at 900, 1800, and 2100 MHz. Finite‐difference time‐domain method was used to first validate the antenna model against measurement results published in the literature and then investigate the specific absorption rate (SAR) in two heterogeneous, anatomically correct human models (Virtual Family male and female) at distances from 10 to 1000 mm. Special attention was given to simultaneous exposure to fields of three different frequencies, their interaction and the additivity of SAR resulting from each frequency. The results show that the highest frequency—2100 MHz—results in the highest spatial‐peak SAR averaged over 10 g of tissue, while the whole‐body SAR is similar at all three frequencies. At distances >200 mm from the antenna, the whole‐body SAR is a more limiting factor for compliance to exposure guidelines, while at shorter distances the spatial‐peak SAR may be more limiting. For the evaluation of combined exposure, a simple summation of spatial‐peak SAR maxima at each frequency gives a good estimation for combined exposure, which was also found to depend on the distribution of transmitting power between the different frequency bands. Bioelectromagnetics 32:234–242, 2011. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here