z-logo
Premium
Effects of static magnetic fields on the growth of various types of human cells
Author(s) -
Sullivan Katherine,
Balin Arthur K.,
Allen Robert G.
Publication year - 2011
Publication title -
bioelectromagnetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 81
eISSN - 1521-186X
pISSN - 0197-8462
DOI - 10.1002/bem.20624
Subject(s) - bioelectromagnetics , magnetic field , biological system , physics , biology , quantum mechanics
The effects of a static magnetic field (SMF) on the proliferation of various types of human cells were determined. All cultures were maintained at 37 °C throughout the experiment. SMF was generated by placing two magnets oppositely oriented on either side of a T25 flask. The flux density in the flask ranged from 35 to 120 mT. Growth curves were constructed by plotting cell number at 18 h and 4, 7, 11, and 14 days after seeding, with the 18‐h point being a measure of attachment efficiency. Exposure to SMF significantly decreased initial attachment of fibroblasts and decreased subsequent growth compared to sham‐exposed control. Significant effects were observed in both fetal lung (WI‐38) and adult skin fibroblasts, but they were generally larger in the fetal lung fibroblast line. SMF did not affect attachment of human melanoma cells, but inhibited their growth by 20% on day 7. SMF produced no effects in a human adult stem cell line. Oxidant production increased 37% in WI‐38 cells exposed to SMF (230–250 mT) during the first 18 h after seeding, when cell attachment occurs. Conversely, no elevation in oxidant levels was observed after a prolonged 5‐day exposure. These results indicate that exposure to SMF has significant biological effects in some, but not all types of human cells. Bioelectromagnetics 32:140–147, 2011. © 2010 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here