Premium
Model study of time‐dependent muscle response to pulsed electrical stimulation
Author(s) -
Joshi Ravindra P.,
Mishra Ashutosh,
Xiao Shu,
Pakhomov Anderi
Publication year - 2010
Publication title -
bioelectromagnetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 81
eISSN - 1521-186X
pISSN - 0197-8462
DOI - 10.1002/bem.20566
Subject(s) - stimulation , bioelectromagnetics , neuroscience , impulse (physics) , electroporation , calcium , biomedical engineering , physics , materials science , chemistry , biophysics , medicine , electromagnetic field , biology , biochemistry , quantum mechanics , gene , metallurgy
A systems‐level model analysis of neuromuscular response to external electrical stimulation is presented. Action potential (AP) generation, dynamics of voltage‐based calcium release at the motor endplates controlled by the arrival of APs, and muscle force production are all comprehensively included. Numerical predictions exhibit trends that are qualitatively similar to measurements of muscle response in rats from a burst of cortical stimulation and a nanosecond impulse. Modulation of neural membrane conductances (including possible electroporation) that alters the neural impulse generation frequency is hypothesized as a possible mechanism leading to observed changes in muscle force production. Other possibilities such as calcium release at nerve end endings also exist. It is also proposed that multipulsing strategies and changing the electric field direction by using multielectrode systems would be useful. Bioelectromagnetics 31:361–370, 2010. © 2010 Wiley‐Liss, Inc.