Premium
A Lorentz model for weak magnetic field bioeffects: Part I—Thermal noise is an essential component of AC/DC effects on bound ion trajectory
Author(s) -
Muehsam David J.,
Pilla Arthur A.
Publication year - 2009
Publication title -
bioelectromagnetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 81
eISSN - 1521-186X
pISSN - 0197-8462
DOI - 10.1002/bem.20494
Subject(s) - physics , larmor precession , magnetic field , lorentz force , amplitude , classical mechanics , noise (video) , lorentz transformation , quantum electrodynamics , computational physics , atomic physics , quantum mechanics , artificial intelligence , computer science , image (mathematics)
We have previously employed the Lorentz–Langevin model to describe the effects of weak exogenous magnetic fields via the classical Lorentz force on a charged ion bound in a harmonic oscillator potential, in the presence of thermal noise forces. Previous analyses predicted that µT‐range fields give rise to a rotation of the oscillator orientation at the Larmor frequency and bioeffects were based upon the assumption that the classical trajectory of the bound charge itself could modulate a biochemical process. Here, it is shown that the thermal component of the motion follows the Larmor trajectory. The results show that the Larmor frequency is independent of the thermal noise strength, and the motion retains the form of a coherent oscillator throughout the binding lifetime, rather than devolving into a random walk. Thermal equilibration results in a continual increase in the vibrational amplitude of the rotating oscillator towards the steady‐state amplitude, but does not affect the Larmor orbit. Thus, thermal noise contributes to, rather than inhibits, the effect of the magnetic field upon reactivity. Expressions are derived for the ensemble average of position and the velocity of the thermal component of the oscillator motion. The projection of position and velocity onto a Cartesian axis measures the nonuniformity of the Larmor trajectory and is illustrated for AC and combined AC/DC magnetic fields, suggesting a means of interpreting resonance phenomena. It is noted that the specific location and height of resonances are dependent upon binding lifetime and initial AC phase. Bioelectromagnetics 30:462–475, 2009. © 2009 Wiley‐Liss, Inc.