Premium
An electronic device for accelerating bone formation in tissues surrounding a dental implant
Author(s) -
Song Jong K.,
Cho Tae H.,
Pan Hui,
Song Yoon M.,
Kim In S.,
Lee Tae H.,
Hwang Soon J.,
Kim Sung J.
Publication year - 2009
Publication title -
bioelectromagnetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 81
eISSN - 1521-186X
pISSN - 0197-8462
DOI - 10.1002/bem.20482
Subject(s) - dentistry , implant , osseointegration , dental implant , medicine , biomedical engineering , surgery
A dental implant is a unique structure which can be used with a noninvasive method because it is inserted into the bone in part and extended extracorporally. This study presents an electronic device that is temporarily connected with the dental implant, and reports its effect on accelerating bone formation in the surrounding tissues in a canine mandibular model. A small sized and low power consumption biphasic electrical current (BEC) stimulator ASIC was developed and the surrounding tissue was exposed to continuous BEC stimulation for 7 days with the parameters of 20 µA/cm 2 , 125 µs duration, and 100 pulses/s. After 2 ( n = 5) and 5 weeks ( n = 5), animals were sacrificed and the specimens were histomorphometrically evaluated. The newly formed bone area (BA) was 1.30 times (3 weeks, P < 0.05) and 1.35 times (5 weeks, P < 0.05) higher in the experimental group compared to the control group, respectively. Bone‐implant contact (BIC) in 3‐week specimens was 1.62 times ( P < 0.05) greater in the experimental group, while there was no statistically significant difference in 5‐week specimens. Based on these results showing accelerated bone formation on and around the dental implant, it could be suggested that the latent time for osseointegration in dental implants can be reduced, and the success rate of implants in poor quality bone can be increased by using our device with BEC. Bioelectromagnetics 30:374–384, 2009. © 2009 Wiley‐Liss, Inc.