Premium
Gauging the strength of power frequency fields against membrane electrical noise
Author(s) -
Bier Martin
Publication year - 2005
Publication title -
bioelectromagnetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 81
eISSN - 1521-186X
pISSN - 0197-8462
DOI - 10.1002/bem.20148
Subject(s) - noise (video) , electric field , brownian motion , physics , bioelectromagnetics , statistical physics , electromagnetic field , acoustics , computer science , quantum mechanics , artificial intelligence , image (mathematics)
Abstract The possible physiological effect of power frequency fields (60 Hz in the US, 50 Hz in most other countries) is still a hotly debated issue. These relatively slow fields distribute themselves across cell membranes and a common approach has been to compare the strength of these fields to the strength of the electric noise that the membrane generates itself through Brownian motion. However, there has been disagreement among researchers on how to evaluate the membrane electric noise. In the first part of this article three major models are discussed. In the second part an ab initio modeling of membrane electric fields finds that different manifestations of Brownian noise lead to an electric noise intensity that is many times larger than what conventional estimates have yielded. Finally, the legitimacy of gauging a nonequilibrium external signal against internal equilibrium noise is questioned. Bioelectromagnetics 26:595–609, 2005. © 2005 Wiley‐Liss, Inc.