z-logo
Premium
Do magnetic fields cause increased risk of childhood leukemia via melatonin disruption?
Author(s) -
Henshaw Denis L.,
Reiter Russel J.
Publication year - 2005
Publication title -
bioelectromagnetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 81
eISSN - 1521-186X
pISSN - 0197-8462
DOI - 10.1002/bem.20135
Subject(s) - melatonin , childhood leukemia , childhood leukaemia , bioelectromagnetics , pineal gland , extremely low frequency , leukemia , medicine , childhood cancer , magnetic field , physiology , cancer , physics , pediatrics , lymphoblastic leukemia , quantum mechanics
Epidemiological studies have reported associations between exposure to power frequency magnetic fields and increased risk of certain cancer and noncancer illnesses. For childhood leukemia, a doubling of risk has been associated with exposures above 0.3/0.4 µT. Here, we propose that the melatonin hypothesis, in which power frequency magnetic fields suppress the nocturnal production of melatonin in the pineal gland, accounts for the observed increased risk of childhood leukemia. Such melatonin disruption has been shown in animals, especially with exposure to electric and/or rapid on/off magnetic fields. Equivocal evidence has been obtained from controlled laboratory magnetic field exposures of volunteers, although the exposure conditions are generally atypical of neighborhood exposures. In contrast, support for the hypothesis is found in the body of studies showing magnetic field disruption of melatonin in human populations chronically exposed to both electric and magnetic fields associated with electricity distribution. Further support comes from the observation that melatonin is highly protective of oxidative damage to the human haemopoietic system. Aspects of the hypothesis are amenable to further investigation. Bioelectromagnetics Supplement 7:S86–S97, 2005. © 2005 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom