Premium
Furfural to FDCA : systematic process design and techno‐economic evaluation
Author(s) -
Dubbink Guus H C,
Geverink Thomas R J,
Haar Bas,
Koets Harald W,
Kumar Abhay,
Berg Henk,
Ham Aloijsius G J,
Lange JeanPaul
Publication year - 2021
Publication title -
biofuels, bioproducts and biorefining
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.931
H-Index - 83
eISSN - 1932-1031
pISSN - 1932-104X
DOI - 10.1002/bbb.2204
Subject(s) - furfural , terephthalic acid , furan , chemistry , carboxylation , pulp and paper industry , raw material , organic chemistry , waste management , environmental science , polyester , catalysis , engineering
Abstract 2,5‐Furan dicarboxylic acid (FDCA) is a promising intermediate for producing polyethylene furan dicarboxylate, an alternative to polyethylene terephthalate that combines a significantly lower greenhouse gas footprint with better mechanical and gas barrier properties. This work presents a process design and techno‐economic evaluation for producing FDCA from non‐edible biomass via the oxidation of furfural to furoate salt, and subsequent carboxylation to furandicarboxylate salt. Major technical uncertainties are associated with the possible polymerization of furfural in the oxidation step and the state of salt phase in the carboxylation step. Based on the furfural market price of $1400/ton this process requires a minimum selling price of 2000 ± 500 $/ton FDCA. To compete with purified terephthalic acid (PTA), it requires a premium of 100% for better performance and sustainability, or a combination of much cheaper furfural and a much lower capital expenditures (CAPEX). © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd