Premium
Cellulose fast pyrolysis for platform chemicals: assessment of potential targets and suitable reactor technology
Author(s) -
Parihar Anurag,
Bhattacharya Sankar
Publication year - 2019
Publication title -
biofuels, bioproducts and biorefining
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.931
H-Index - 83
eISSN - 1932-1031
pISSN - 1932-104X
DOI - 10.1002/bbb.2066
Subject(s) - pyrolysis , cellulose , biomass (ecology) , cellulosic ethanol , lignocellulosic biomass , furfural , pyrolysis oil , fluidized bed , process engineering , waste management , pulp and paper industry , chemistry , chemical engineering , environmental science , catalysis , organic chemistry , engineering , oceanography , geology
The cellulosic component of lignocellulosic biomass can be converted to commercially valuable platform chemicals through pyrolysis provided it is effectively controlled and optimized. This review first discusses the underpinning kinetics and mechanism of cellulose pyrolysis to identify target platform chemicals. Platform chemicals like 5‐hydroxymethyl furfural, 5‐chloromethyl furfural, and levoglucosenone, which are potentially amenable to the pyrolytic conversion of cellulose, are then elucidated. There are laboratory and large‐scale reactor technologies available for converting biomass to bio‐oil but they have not been comprehensively investigated for producing platform chemicals through pyrolysis. This review critically evaluates different reactor types available for developing the catalytic pyrolysis process for converting cellulosic component of biomass to platform chemicals. The fluidized bed reactor stands out as the most suitable reactor technology for the catalytic pyrolysis of cellulose to platform chemicals owing to attributes like short residence time, high heating rate, uniform mixing, efficient heat transfer, and scalability of operations. This article provides perspective on the implementation of this technology for the pyrolysis of the cellulosic component of biomass to platform chemicals. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd