z-logo
Premium
Process design and evaluations for producing pyrolytic jet fuel
Author(s) -
Liu YuCheng,
Wang WeiCheng
Publication year - 2019
Publication title -
biofuels, bioproducts and biorefining
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.931
H-Index - 83
eISSN - 1932-1031
pISSN - 1932-104X
DOI - 10.1002/bbb.2061
Subject(s) - renewable energy , pyrolysis , raw material , biomass (ecology) , pulp and paper industry , environmental science , waste management , materials science , chemistry , engineering , agronomy , biology , organic chemistry , electrical engineering
In this study, process simulation and techno‐economic analysis (TEA) were conducted to evaluate the production of renewable jet fuel (RJF) through the pyrolysis‐to‐RJF process. The process model was developed based on experimental results for the renewable jet fuel production process using the fast pyrolysis of rice husk, hydro‐processing of pyrolytic oil, and hydro‐cracking / isomerization of hydro‐processed oil. The mass and energy flows were input into the TEA model, which was established based on local conditions in Taiwan. The study included three parts: (1) the mass, energy and carbon balances – the major product, RJF, gave an energy yield of 26.8%, a mass yield of 9%, and a carbon yield of 21%; (2) an economic analysis – the MJSP of RJF for the pyrolysis‐to‐RJF process was $3.21/L, based on the plant capacity of 600 tonnes per day; (3) a sensitivity analysis: the impacts of the feedstock cost, catalyst life, co‐product selling price, catalyst cost, hydrogen cost, and plant capacity were discussed. This study demonstrated the economic potential of locally developing a pyrolysis‐to‐RJF process to produce RJF from solid biomass. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here