Premium
An Investigation of Titanium/Silicon Oxide‐CNTs Anode Material for Lithium‐Ion Batteries
Author(s) -
Zhang Wenshan,
Li Wensheng,
Zhou Xiaoping
Publication year - 2020
Publication title -
batteries and supercaps
Language(s) - English
Resource type - Journals
ISSN - 2566-6223
DOI - 10.1002/batt.201900178
Subject(s) - materials science , anode , amorphous solid , chemical engineering , lithium (medication) , titanium , titanium oxide , electrochemistry , silicon , crystal (programming language) , lithium ion battery , nanotechnology , battery (electricity) , metallurgy , electrode , crystallography , chemistry , medicine , programming language , power (physics) , physics , quantum mechanics , computer science , engineering , endocrinology
Discovering a high‐performance (high rate capability, high specific capacity, and good stability) anode material for automobile battery applications is a great challenge. A titanium/silicon oxide‐CNTs (Ti m Si n O l ‐CNTs) is synthesized and tested as anode material for lithium‐ion batteries. High specific capacity (278 mAhg −1 at 100 mA g −1 ), high rate capability (156 mAh g −1 at 4000 mA g −1 ), and good stability (maintains 278 mAhg −1 after 200 cycles) are reached over Ti m Si n O l ‐CNTs. The as‐synthesized Ti m Si n O l ‐CNTs has a particle structure that Ti m Si n O l encapsulates CNTs with CNTs ends stretching out of the particles. In the Ti m Si n O l phase, the TiO 2 crystal seeds are formed and encapsulated in amorphous SiO y boundaries, which have sub‐nano pores. The high performance properties of Ti m Si n O l ‐CNTs could come from the synergetic combination of (1) the excellent electronic conductivity of CNTs and the amorphous carbon in Ti m Si n O l ‐CNTs, (2) the high Li + intaking capability of the TiO 2 crystal seeds, (3) the high electrochemical activity of SiO y , (4) the high Li + insertion/extraction kinetics in the small TiO 2 crystal seeds and the amorphous SiO y with sub‐nano pores, and (5) the high volume change tolerance offered by the CNTs binder and the amorphous SiO y .