z-logo
Premium
The Indium−Lithium Electrode in Solid‐State Lithium‐Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability
Author(s) -
Santhosha A. L.,
Medenbach Lukas,
Buchheim Johannes R.,
Adelhelm Philipp
Publication year - 2019
Publication title -
batteries and supercaps
Language(s) - English
Resource type - Journals
ISSN - 2566-6223
DOI - 10.1002/batt.201800149
Subject(s) - electrode , electrolyte , lithium (medication) , reference electrode , standard hydrogen electrode , standard electrode potential , electrode potential , materials science , redox , reversible hydrogen electrode , palladium hydrogen electrode , fast ion conductor , absolute electrode potential , phase (matter) , inorganic chemistry , chemistry , medicine , organic chemistry , endocrinology
Lithium solid‐state batteries (Li‐SSBs) require electrodes that provide a sufficiently stable interface with the solid electrolyte. Due to the often limited stability window of solid electrolytes, researchers frequently favor an In−Li alloy instead of lithium metal as counter electrode for two‐electrode measurements. Maintaining a stable potential at the counter electrode is especially important because three‐electrode measurements are hard to realize in solid‐state cells. Although a constant potential of about 0.6 V vs. Li + /Li is commonly accepted for the In−Li electrode, only little is known about the behavior of this electrode. Moreover, the In−Li phase diagram is complex containing several intermetallic phases/compounds such as the InLi phase, or line compounds such as In 4 Li 5 or In 2 Li 3 . This means that the redox potential of the In−Li electrode depends on the alloy composition, i. e. the In/Li ratio. Here, we study the behavior of In−Li electrodes in cells with liquid electrolyte to determine their phase evolution and several equilibrium potentials vs. Li + /Li. The room temperature equilibrium redox potential of the In−Li electrode with the favored composition (or more precisely the Li + /(In−InLi) electrode) is 0.62 V vs. Li + /Li. We then discuss the use of In−Li electrodes in solid state cells using Li 3 PS 4 as solid electrolyte and give examples on the importance of the right In/Li ratio of the electrode. While the right In/Li ratio enables stable lithium insertion/deinsertion in symmetrical cells for at least 100 cycles, too much lithium in the electrode leads to a drop in redox potential combined with a rapid build‐up of interface resistance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom