Premium
Phosphorylated abacavir analogue (ABC‐1) has ameliorative action against Newcastle disease virus induced pathogenesis in chicken
Author(s) -
Suresh K. A.,
Venkata Subbaiah K. C.,
Thirunavukkarasu C.,
Chennakesavulu S.,
Rachamallu A.,
Chamarti Naga Raju,
Wudayagiri Rajendra,
Valluru Lokanatha
Publication year - 2019
Publication title -
biotechnology and applied biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.468
H-Index - 70
eISSN - 1470-8744
pISSN - 0885-4513
DOI - 10.1002/bab.1814
Subject(s) - phosphorylation , pathogenesis , western blot , virus , biology , newcastle disease , virology , flow cytometry , oxidative phosphorylation , microbiology and biotechnology , immunology , biochemistry , gene
Newcastle disease virus (NDV) causes huge economic loss to the poultry industry due to high mortality and morbidity. The present study aimed to assess the protective role of novel phosphorylated analogue ABC‐1 in vivo in NDV‐infected chickens through the inhibition of fusion protein. Both NDV‐induced oxidative damage and protective role of novel phosphorylated ABC‐1 were evaluated in vital organs such as the liver and lung of chickens. Enzyme linked immunosorbent assay (ELISA) results showed that protein oxidation and nitration levels were significantly raised in NDV‐infected tissues compared to healthy controls, whereas these levels were reduced significantly ( P < 0.05) in birds treated with phosphorylated compounds compared to the NDV‐infected group alone. Additional investigation with double immunofluorescence showed that the large amount of immuno colocalization and Western blot analysis also confirmed this observation through its band pattern in NDV‐infected birds compared to healthy birds, whereas these alterations were reduced in treatment with novel phosphorylated ABC‐1. The expression of fusion glycoprotein was studied by immuno colocalization, PCR, and flow cytometry, and results demonstrated that the novel phosphorylated analogues reduced the expression of fusion glycoprotein. These results put forth that novel phosphorylated ABC‐1 protects chickens from NDV‐induced pathogenesis, protein oxidation/nitration, and exerts potent antiviral activity.