z-logo
open-access-imgOpen Access
A new logit‐artificial neural network ensemble for mode choice modeling: a case study for border transport
Author(s) -
Gazder Uneb,
Ratrout Nedal T.
Publication year - 2015
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1002/atr.1306
Subject(s) - multinomial logistic regression , mode choice , artificial neural network , mode (computer interface) , computer science , metropolitan area , logit , logistic regression , discrete choice , artificial intelligence , ensemble learning , econometrics , machine learning , operations research , public transport , transport engineering , engineering , mathematics , geography , archaeology , operating system
Summary Logit model is one of the statistical techniques commonly used for mode choice modeling, while artificial neural network (ANN) is a very popular type of artificial intelligence technique used for mode choice modeling. Ensemble learning has evolved to be very effective approach to enhance the performance for many applications through integration of different models. In spite of this advantage, the use of ANN‐based ensembles in mode choice modeling is under explored. The focus of this study is to investigate the use of aforementioned techniques for different number of transportation modes and predictor variables. This study proposes a logit‐ANN ensemble for mode choice modeling and investigates its efficiency in different situations. Travel between Khobar‐Dammam metropolitan area of Saudi Arabia and Kingdom of Bahrain is selected for mode choice modeling. The travel on this route can be performed mainly by air travel or private vehicle through King Fahd causeway. The results show that the proposed ensemble gives consistently better accuracies than single models for multinomial choice problems irrespective of number of input variables. Copyright © 2015 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here