Premium
The meaning of gyroscopic invariance for the electromagnetic energy‐momentum tensor
Author(s) -
Kreisel E.
Publication year - 1990
Publication title -
astronomische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 63
eISSN - 1521-3994
pISSN - 0004-6337
DOI - 10.1002/asna.2113110415
Subject(s) - physics , antisymmetric tensor , lanczos tensor , antisymmetric relation , mathematical physics , stress–energy tensor , einstein tensor , classical mechanics , electromagnetic field , einstein , tensor (intrinsic definition) , metric tensor , quantum electrodynamics , tensor field , quantum mechanics , tensor density , exact solutions in general relativity , riemann curvature tensor , mathematics , gauge theory , mathematical analysis , geometry , curvature , geodesic
The gyroscopic invariance implies the representation of the antisymmetric part of the Hermite‐symmetric metric by a vector potential. Therefore we introduce the six functions of this antisymmetric part in general as derived by two vector potentials. Then Einstein's variational principle leads to a slight modification of the Einstein‐Schrödinger equations, which just encludes Minkowski's form of the energy‐momentum tensor for the electromagnetic field and the gluon field.