Premium
Wir untersuchen Ein‐Soliton‐Störungen eines flachen Friedmann‐Robertson‐Walker‐Modells, das eine ideale Flüssigkeit hat, deren Druck gleich der Energiedichte (starre Flüssigkeit) ist, im Falle eines negativen Polparameters, so da$sZ Singularitäten über Nullhyperflächen entstehen.
Author(s) -
Gleiser R. J.,
Diaz M. C.,
Grosso R. D.
Publication year - 1988
Publication title -
astronomische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 63
eISSN - 1521-3994
pISSN - 0004-6337
DOI - 10.1002/asna.2113090406
Subject(s) - physics , perfect fluid , friedmann–lemaître–robertson–walker metric , mathematical physics , gravitational singularity , chandrasekhar limit
We consider one‐soliton perturbations of a flat Friedmann‐Robertson‐Walker (FRW) cosmological model, with an ideal fluid with pressure equal to the energy density (stiff fluid), in the case where the “pole trajectory” parameter is negative, introducing thereby singularities along certain null hypersurfaces. Starting with a metric that approaches asymptotically the FR W background, we show that it is possible to construct an extension through these hypersurfaces such that the energy momentum tensor T ab is finite and satisfies the energy conditions. The extension is only C 1 , providing a sort of “shock front” with continuity in T ab , that has an associated phase transition from null dust to stiff fluid, the transition being of the form described by CHANDRASEKHAR and XANTHOPOULOS.