Premium
REDUCE programs for algebraic computation in general relativity
Author(s) -
Dautcourt G.,
Jann K.P.
Publication year - 1983
Publication title -
astronomische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 63
eISSN - 1521-3994
pISSN - 0004-6337
DOI - 10.1002/asna.2113040505
Subject(s) - metric tensor , tensor (intrinsic definition) , general relativity , computation , scalar (mathematics) , mathematics of general relativity , tensor calculus , algebraic number , lanczos tensor , tensor contraction , algebra over a field , metric (unit) , weyl tensor , theoretical motivation for general relativity , theory of relativity , tensor density , tensor field , mathematics , mathematical physics , physics , pure mathematics , theoretical physics , exact solutions in general relativity , riemann curvature tensor , numerical relativity , tensor product , mathematical analysis , algorithm , geometry , engineering , operations management , curvature , geodesic
REDUCE programs for algebraic computation in General Relativity are presented which use the metric tensor as input. The programs calculate — according to the user's option — the C HRISTOFFEL symbols, the R IEMANN tensor, the R ICCI tensor, the R ICCI scalar, the E INSTEIN tensor and the W EYL tensor.