z-logo
Premium
Quantitative solar spectroscopy
Author(s) -
Wilhelm K.
Publication year - 2010
Publication title -
astronomische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 63
eISSN - 1521-3994
pISSN - 0004-6337
DOI - 10.1002/asna.200911360
Subject(s) - remote sensing , calibration , physics , instrumentation (computer programming) , helioseismology , spectroscopy , optics , spectroradiometer , radiance , photosphere , corona (planetary geology) , environmental science , spectral line , astronomy , magnetic field , computer science , astrobiology , geology , reflectivity , quantum mechanics , venus , operating system
Quantitative solar spectroscopy must be based on calibrated instrumentation. The basic requirement of a calibration, i.e., a comparison between the instrument under test and a primary laboratory standard through appropriate procedures, will be briefly reviewed, and the application to modern space instruments will be illustrated. Quantitative measurements of spectral radiances with high spectral and spatial resolutions as well as spectral irradiances yield detailed information on temperatures, electron densities, bulk and turbulent motions, element abundances of plasma structures in various regions of the solar atmosphere – from the photosphere to the outer corona and the solar wind. The particular requirements for helioseismology and magnetic‐field observations will not be covered in any depth in this review. Calibration by a laboratory standard is necessary, but not sufficient, because an adequate radiometric stability can only be achieved together with a stringent cleanliness concept that rules out a contamination of the optical system and the detectors as much as possible. In addition, there is a need for calibration monitoring through inter‐calibration and other means (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here