z-logo
Premium
Leakage of photospheric motions into the magnetic solar atmosphere: new prospects of magneto‐seismology
Author(s) -
Erdélyi R.,
Pintér B.,
Malins C.
Publication year - 2007
Publication title -
astronomische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 63
eISSN - 1521-3994
pISSN - 0004-6337
DOI - 10.1002/asna.200610734
Subject(s) - physics , atmosphere (unit) , dissipation , helioseismology , solar atmosphere , magnetic field , leakage (economics) , computational physics , geophysics , meteorology , macroeconomics , quantum mechanics , economics , thermodynamics
The leakage and coupling of solar global oscillations to the overlaying magnetized solar atmosphere is investigated in this paper. Solar global acoustic oscillations may couple through resonant absorption to atmospheric local magnetic eigenoscillations (i) resulting in small shifts of the order of μHz in the real part of their frequencies as compared to their non‐magnetic counterparts, and (ii) causing dissipation of wave energy and a consequent line broadening of the modes. Alternatively, global modes may also penetrate deeply into the magnetized solar atmosphere through leakage along magnetic field lines causing small‐scale structuring in the transition region and low corona. By analyzing the dynamic fragmentation generated by direct wave propagations, one may deduce diagnostic information about the geometric and physical properties of the local magnetic environment in the atmosphere. A few numerical examples are presented here to demonstrate the leakage of global oscillations and its influence and omnipotence on the dynamics of the lower solar atmosphere. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here