z-logo
Premium
Inferring the emission regions for different kinds of gamma‐ray bursts
Author(s) -
Zhang Z. B.,
Xie G. Z.,
Deng J. G.,
Wei B. T.
Publication year - 2007
Publication title -
astronomische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 63
eISSN - 1521-3994
pISSN - 0004-6337
DOI - 10.1002/asna.200610666
Subject(s) - physics , gamma ray burst , astrophysics , radius , electron , asymmetry , radiative transfer , curvature , pulse (music) , radiative cooling , lorentz factor , computational physics , atomic physics , lorentz transformation , optics , classical mechanics , detector , geometry , nuclear physics , quantum mechanics , computer security , mathematics , computer science
Using a theoretical model describing pulse shapes, we have clarified the relations between the observed pulses and their corresponding timescales, such as the angular spreading time, the dynamic time as well as the cooling time. We find that the angular spreading timescale caused by curvature effect of fireball surface only contributes to the falling part of the observed pulses, while the dynamic one in the co‐moving frame of the shell merely contributes to the rising portion of pulses provided the radiative time is negligible. In addition, the pulses resulted from the pure radiative cooling time of relativistic electrons exhibit properties of fast rise and slow decay (a quasi‐FRED) profile together with smooth peaks. Besides, we interpret the phenomena of wider pulses tending to be more asymmetric to be a consequence of the difference in emission regions. Meanwhile, we find the intrinsic emission time is decided by the ratios of lorentz factors and radii of the shells between short and long bursts. Based on the analysis of asymmetry, our results suggest that the long GRB pulses may occur in the regions with larger radius, while the short bursts could locate at the smaller distance from central engine. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here