z-logo
Premium
The Granada workshop on High Redshift Radio Galaxies: An overview
Author(s) -
Röttgering H. J. A.
Publication year - 2006
Publication title -
astronomische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 63
eISSN - 1521-3994
pISSN - 0004-6337
DOI - 10.1002/asna.200610491
Subject(s) - physics , lofar , astrophysics , redshift , active galactic nucleus , radio galaxy , galaxy , astronomy , galaxy formation and evolution , radio telescope
Abstract The Granada workshop on High Redshift Radio Galaxies (HzRGs) gave an excellent overview of the progress that has been made in this field during the last 3 years. Here we briefly review some of the results, with an emphasis on what studies of HzRGs can teach us about the formation and evolution of massive galaxies, clusters and active galactic nuclei (AGN). Of great relevance for this workshop are scenarios that describe certain aspects of the evolution of radio galaxies, including (i) the sequence of events after merging of galaxies that ultimately lead to extended powerful radio sources and (ii) the mass assembly and virialization of the hosting massive galaxies and their associated (proto‐)clusters. Furthermore, I briefly discuss two projects that are important for a further understanding of AGN and high redshift radio galaxies. First, using the MIDI instrument mounted on the VLT Interferometer, the dusty tori of nearby AGN can be studied in the range of 8–13 micron at high angular resolution. The first result on the nearby AGN NGC 1068 as presented by Jaffe et al. (2004) indicated the presence of a hot ( T > 800 K), compact (≲1 pc) component, possible identified with the base of the jet and a warm (270 K), well‐resolved (3 × 4 pc) component associated with the alleged torus. Second, LOFAR is a new low frequency radio telescope that is currently being build in the Netherlands and is expected to be operational in 2008. With 50 stations spread over an area of 100 km in diameter, its resolution and sensitivity will be unprecedented in the frequency range 10–240 MHz. LOFAR will be a unique instrument that will impact a broad range of astrophysical topics varying from the epoch of reionisation, to gamma ray bursts and cosmic rays. Surveys with LOFAR will be of paramount importance for studies of HzRGs: It will enable (i) defining samples of radio galaxies with redshifts higher than 6, (ii) observations of starbursting galaxies in proto‐clusters, and (iii) mapping out the low‐frequency radio emission of virtually all northern radio‐loud AGN in revolutionary detail. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here