Premium
QPO as the Rosetta Stone for understanding black hole accretion
Author(s) -
Abramowicz M. A.
Publication year - 2005
Publication title -
astronomische nachrichten
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 63
eISSN - 1521-3994
pISSN - 0004-6337
DOI - 10.1002/asna.200510413
Subject(s) - physics , accretion (finance) , astrophysics , neutron star , confusion , black hole (networking) , accretion disc , strong gravity , theoretical physics , astronomy , gravitation , psychology , computer network , routing protocol , routing (electronic design automation) , computer science , psychoanalysis , link state routing protocol
Quasi‐periodic oscillations (QPO) seen in the X‐ray fluxes of individual neutron stars and black hole sources are one of most intriguing phenomena in today's astrophysics. The QPO nature is visibly determined by super‐strong Einstein's gravity. I argue here that it also profoundly depends on the MRI turbulence in accretion flows. Understanding the QPO physics may therefore guide accretion theory out of its present state of confusion. Readers will find here an up‐to‐date, comprehensible account of what is known, and what is not, about the QPO physics. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)