z-logo
Premium
The General Metrical Fundamental Form of the DE SITTER Universes
Author(s) -
Treder H.J.
Publication year - 1975
Publication title -
astronomische nachrichten
Language(s) - German
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 63
eISSN - 1521-3994
pISSN - 0004-6337
DOI - 10.1002/asna.19752960104
Subject(s) - physics , lambda , einstein , mathematical physics , de sitter universe , astrophysics , universe , quantum mechanics
Das allgemeine Linienelement eines DE SITTER‐Kosmos mit\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm ds}^{\rm 2} = {\rm dt}^{\rm 2} - {\rm R}^{\rm 2} (t)\frac{{{\rm dt}^{\rm 2} }}{{({\rm I} + {\textstyle{\varepsilon \over 4}}r^{\rm 2} )^2 }} $\end{document}hängt von zwei Integrationskonstanten A und B ab. Mit EINSTEIN's kosmologischer Konstante \documentclass{article}\pagestyle{empty}\begin{document}$ \lambda > o $\end{document} ist\documentclass{article}\pagestyle{empty}\begin{document}$$ R(t) = Ae^{\sqrt {\lambda /3t} } + Be^{ - \sqrt {\lambda /3t} } $$\end{document}und \documentclass{article}\pagestyle{empty}\begin{document}$ \varepsilon {\rm = }\frac{{{\rm 4}\lambda }}{{\rm 3}}AB $\end{document} AB gemäß der FRIEDMANNschen Gleichung.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here