z-logo
Premium
A robust analysis of unreplicated factorials
Author(s) -
AguirreTorres Víctor,
Vara Román
Publication year - 2012
Publication title -
applied stochastic models in business and industry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.413
H-Index - 40
eISSN - 1526-4025
pISSN - 1524-1904
DOI - 10.1002/asmb.938
Subject(s) - outlier , computer science , fractional factorial design , robust regression , robust statistics , regression , statistics , contingency , factorial experiment , econometrics , mathematics , artificial intelligence , machine learning , linguistics , philosophy
The existing methods for analyzing unreplicated fractional factorial experiments that do not contemplate the possibility of outliers in the data have a poor performance for detecting the active effects when that contingency becomes a reality. There are some methods to detect active effects under this experimental setup that consider outliers. We propose a new procedure based on robust regression methods to estimate the effects that allows for outliers. We perform a simulation study to compare its behavior relative to existing methods and find that the new method has a very competitive or even better power. The relative power improves as the contamination and size of outliers increase when the number of active effects is up to four. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom