Premium
Dynamic pricing model and algorithm for perishable products with fuzzy demand
Author(s) -
Xiong Yu,
Li Gendao,
Fernandes Kiran Jude
Publication year - 2010
Publication title -
applied stochastic models in business and industry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.413
H-Index - 40
eISSN - 1526-4025
pISSN - 1524-1904
DOI - 10.1002/asmb.816
Subject(s) - fuzzy logic , computer science , mathematical optimization , dynamic pricing , credibility , credibility theory , dynamic programming , revenue management , maximization , revenue , algorithm , economics , mathematics , artificial intelligence , microeconomics , accounting , political science , law
This paper studies the dynamic pricing problem of selling fixed stock of perishable items over a finite horizon, where the decision maker does not have the necessary historic data to estimate the distribution of uncertain demand, but has imprecise information about the quantity demand. We model this uncertainty using fuzzy variables. The dynamic pricing problem based on credibility theory is formulated using three fuzzy programming models, viz.: the fuzzy expected revenue maximization model, α‐optimistic revenue maximization model, and credibility maximization model. Fuzzy simulations for functions with fuzzy parameters are given and embedded into a genetic algorithm to design a hybrid intelligent algorithm to solve these three models. Finally, a real‐world example is presented to highlight the effectiveness of the developed model and algorithm. Copyright © 2009 John Wiley & Sons, Ltd.