Premium
Optimal designs for parameter estimation of the Ornstein–Uhlenbeck process
Author(s) -
Zagoraiou Maroussa,
Baldi Antognini Alessandro
Publication year - 2008
Publication title -
applied stochastic models in business and industry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.413
H-Index - 40
eISSN - 1526-4025
pISSN - 1524-1904
DOI - 10.1002/asmb.749
Subject(s) - mathematics , fisher information , optimal design , mathematical optimization , gaussian , ornstein–uhlenbeck process , exponential function , estimation theory , correlation , constant (computer programming) , sample size determination , stochastic process , computer science , statistics , mathematical analysis , physics , geometry , quantum mechanics , programming language
This paper deals with optimal designs for Gaussian random fields with constant trend and exponential correlation structure, widely known as the Ornstein–Uhlenbeck process. Assuming the maximum likelihood approach, we study the optimal design problem for the estimation of the trend µ and the correlation parameter θ using a criterion based on the Fisher information matrix. For the problem of trend estimation, we give a new proof of the optimality of the equispaced design for any sample size (see Statist. Probab. Lett. 2008; 78 :1388–1396). We also show that for the estimation of the correlation parameter, an optimal design does not exist. Furthermore, we show that the optimal strategy for µ conflicts with the one for θ, since the equispaced design is the worst solution for estimating the correlation. Hence, when the inferential purpose concerns both the unknown parameters we propose the geometric progression design, namely a flexible class of procedures that allow the experimenter to choose a suitable compromise regarding the estimation's precision of the two unknown parameters guaranteeing, at the same time, high efficiency for both. Copyright © 2008 John Wiley & Sons, Ltd.