z-logo
Premium
Feedback quality adjustment with Bayesian state‐space models
Author(s) -
Triantafyllopoulos K.
Publication year - 2006
Publication title -
applied stochastic models in business and industry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.413
H-Index - 40
eISSN - 1526-4025
pISSN - 1524-1904
DOI - 10.1002/asmb.659
Subject(s) - multiplicative function , bayesian probability , ewma chart , state space representation , control chart , computer science , series (stratigraphy) , algorithm , conjugate prior , posterior probability , state space , mathematics , statistics , process (computing) , operating system , mathematical analysis , paleontology , biology
In this paper we develop a Bayesian procedure for feedback adjustment and control of a single process. We replace the usual exponentially weighted moving average (EWMA) predictor by a predictor of a local level model. The novelty of this approach is that the noise variance ratio (NVR) of the local level model is assumed to change stochastically over time. A multiplicative time series model is used to model the evolution of the NVR and a Bayesian algorithm is developed giving the posterior and predictive distributions for both the process and the NVR. The posterior distribution of the NVR allows the modeller to judge better and evaluate the performance of the model. The proposed algorithm is semi‐conjugate in the sense that it involves conjugate gamma/beta distributions as well as one step of simulation. The algorithm is fast and is found to outperform the EWMA and other methods. An example considering real data from the microelectronic industry illustrates the proposed methodology. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here