Premium
Bayesian semiparametric Markov switching stochastic volatility model
Author(s) -
Virbickaitė Audronė,
Lopes Hedibert F.
Publication year - 2019
Publication title -
applied stochastic models in business and industry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.413
H-Index - 40
eISSN - 1526-4025
pISSN - 1524-1904
DOI - 10.1002/asmb.2434
Subject(s) - stochastic volatility , volatility (finance) , econometrics , markov chain monte carlo , markov chain , bayesian probability , bayesian inference , computer science , sabr volatility model , mathematics , statistics
This paper proposes a novel Bayesian semiparametric stochastic volatility model with Markov switching regimes for modeling the dynamics of the financial returns. The distribution of the error term of the returns is modeled as an infinite mixture of Normals; meanwhile, the intercept of the volatility equation is allowed to switch between two regimes. The proposed model is estimated using a novel sequential Monte Carlo method called particle learning that is especially well suited for state‐space models. The model is tested on simulated data and, using real financial times series, compared to a model without the Markov switching regimes. The results show that including a Markov switching specification provides higher predictive power for the entire distribution, as well as in the tails of the distribution. Finally, the estimate of the persistence parameter decreases significantly, a finding consistent with previous empirical studies.