z-logo
Premium
Multi‐period mean variance portfolio selection under incomplete information
Author(s) -
Zhang Ling,
Li Zhongfei,
Xu Yunhui,
Li Yongwu
Publication year - 2016
Publication title -
applied stochastic models in business and industry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.413
H-Index - 40
eISSN - 1526-4025
pISSN - 1524-1904
DOI - 10.1002/asmb.2191
Subject(s) - unobservable , efficient frontier , portfolio , econometrics , investment strategy , dynamic programming , portfolio optimization , capital market line , economics , asset allocation , finance , mathematics , mathematical optimization , market liquidity , stock market , market depth , paleontology , horse , biology
This paper solves an optimal portfolio selection problem in the discrete‐time setting where the states of the financial market cannot be completely observed, which breaks the common assumption that the states of the financial market are fully observable. The dynamics of the unobservable market state is formulated by a hidden Markov chain, and the return of the risky asset is modulated by the unobservable market state. Based on the observed information up to the decision moment, an investor wants to find the optimal multi‐period investment strategy to maximize the mean‐variance utility of the terminal wealth. By adopting a sufficient statistic, the portfolio optimization problem with incompletely observable information is converted into the one with completely observable information. The optimal investment strategy is derived by using the dynamic programming approach and the embedding technique, and the efficient frontier is also presented. Compared with the case when the market state can be completely observed, we find that the unobservable market state does decrease the investment value on the risky asset in average. Finally, numerical results illustrate the impact of the unobservable market state on the efficient frontier, the optimal investment strategy and the Sharpe ratio. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here