z-logo
Premium
Modeling and analysis of a warranty policy using new and reconditioned parts
Author(s) -
Chari Navin,
Diallo Claver,
Venkatadri Uday,
Khatab Abdelhakim
Publication year - 2016
Publication title -
applied stochastic models in business and industry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.413
H-Index - 40
eISSN - 1526-4025
pISSN - 1524-1904
DOI - 10.1002/asmb.2178
Subject(s) - warranty , remanufacturing , profit (economics) , computer science , product (mathematics) , operations research , reliability engineering , economics , mathematics , engineering , manufacturing engineering , microeconomics , political science , law , geometry
Remanufacturing processes such as refurbishing and reconditioning can extend the life of a product returned from the field. This provides financial opportunities and allows manufacturers to engage in sustainable practices. However, the inability to access a sufficient quantity of reconditioned components from end‐of‐life products can force the concurrent utilization of new components. This paper deals with the determination of an optimal warranty policy where a mixture of new and reconditioned components are used to carry out replacements upon failure for products under warranty. A mathematical optimization model is developed to maximize the manufacturer's expected total profit based on four decision variables: the warranty length, the sale price, the age of reconditioned components, and the proportion of reconditioned components to be used. A numerical procedure is used to compute the optimal solution. Numerical results are provided and discussed to demonstrate the validity and the added value of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom